If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-18y+16=0
a = 2; b = -18; c = +16;
Δ = b2-4ac
Δ = -182-4·2·16
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-14}{2*2}=\frac{4}{4} =1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+14}{2*2}=\frac{32}{4} =8 $
| -5-7x=23 | | 7=n/9 | | 0.3(8x+56)=2.4(x+7 | | -3(x-1)8(x-3=6x+7-5x | | x+(9-x)+4x=81 | | −6.5x+0.29=−2.31 | | 4(1+b)=19+b | | 3(1+p)=5(p+1) | | 3n-25=10 | | 8(10-2x)=-8x | | -36+2p=2(1-3p)+2 | | 6x+10x+10=180 | | -3(a-3)=10-(3a+1) | | 7(10x+5)=70x-2 | | 5(3-d)=24-2d | | (n-6)/2=(n-2)/9 | | 5m/3m=2m | | 3+5x+3x+17=180 | | 4=3^2x-3x-9 | | p-7=20 | | 2y^2-18y+8=0 | | 1.5x=2.3x+7 | | 16x-1=2(7x-5)+2x+9 | | C=0.06x+8.75 | | (x+5)x1/x+5=1 | | -8+7x=6(3-2x)-7x | | 11x+61x-10=12(6x+13) | | 2w-22=-13+2w-9 | | 3s-10s=3(s+2) | | 3(5x+2=(3x-6) | | 6x/3-6/3=4x/10+12/10 | | 4t-2=34 |